If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+50y+25=0
a = 1; b = 50; c = +25;
Δ = b2-4ac
Δ = 502-4·1·25
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-20\sqrt{6}}{2*1}=\frac{-50-20\sqrt{6}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+20\sqrt{6}}{2*1}=\frac{-50+20\sqrt{6}}{2} $
| 2x+5-4x=3-6x+10 | | 5x+1=1-5 | | 0=1.5t+-0.075t^2 | | 12x-2x+66=12x+26 | | 12x-3x+84=12x+51 | | X+5x+4x+3x=360 | | 10+4x=5(x-6)-33 | | G=9(3.14)k | | t^2=20t | | 4n+3.1=7.5. | | b–2(2–5b)=7 | | 4x^2+4+13x=0 | | R(x)=3x,C(x)=0.01x^2+0.3x+20 | | 3x-2=1x+12 | | 2(3)+3y-6=0 | | 8n+10=-102 | | 5/x=12/3 | | 3x-16=2x+7 | | (11x+7)(4x-7)=0 | | 6=8+8x | | 173=86-w | | x+(-96)=48 | | x-2+3=24 | | (1/3)y=1/5 | | -7x+4÷3+7/3=-7x÷5 | | 13x-5=4x+4 | | 8n+7-3n=88 | | 2x-15=1x+7 | | -10=(5+n)/3 | | x2=-3 | | -90=6p | | -3r+9=-4r=5 |